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Abstract. Globally, flooding is the most frequent among all natural dis-
asters, commonly resulting in damage to infrastructure, economic catas-
trophe, and loss of life. Since the flow of water is influenced by the shape
and height of topography, an effective mechanism for preventing and di-
recting floods is to use structures that increase height, e.g., levees and
sandbags. In this paper, we introduce the Optimal Flood Mitigation
Problem (OFMP), which optimizes the positioning of barriers to pro-
tect critical assets with respect to a flood scenario. In its most accurate
form, the OFMP is a challenging optimization problem that combines
nonlinear partial differential equations with discrete barrier choices. The
OFMP requires solutions that combine approaches from computational
simulation and optimization. Herein, we derive linear approximations to
the shallow water equations and embed them in the OFMP. Preliminary
results demonstrate their effectiveness.

Keywords: flood mitigation, nonlinear programming, mixed integer pro-
gramming, approximations

1 Introduction

Throughout human history, water-related natural disasters, e.g., the Johnstown
Flood of 1889, the Great Mississippi Flood of 1927, and Hurricane Katrina in
2005, have caused immense human suffering and economic consequences. While
the causes of such disasters (hurricanes, dam failures, excessive rainfall, etc.)
vary, all are characterized by flooding, i.e., the flow of water into undesired areas.
As a result, societies and governments have invested considerable resources into
controlling and preventing the occurrence of floods. Despite these efforts, risks
remain, and floods continue to be a subject of intense scrutiny [10, 9, 5].

One of the most influential factors in flooding is the shape of the ground sur-
face (topography). As an example, under the influence of gravity, water naturally
flows downhill and around areas of higher topographic elevation. Topography
can be adjusted through construction of permanent structures, such as levees
and berms, or temporary structures, such as sandbags. This paper introduces
the Optimal Flood Mitigation Problem (OFMP), an optimization problem that
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aims to mitigate flooding by adjusting topographic elevation. Its goal is to select
the position of barriers, e.g., sandbags or levees, to protect critical assets and/or
enable the evacuation of threatened populations.

The OFMP is an inherently difficult optimization problem. Since these bar-
riers divert flow, it is critical to accurately model the flood’s propagation, tradi-
tionally captured by the two-dimensional (2D) shallow water equations. These
nonlinear partial differential equations (PDEs) express flow conversation and
momentum along two horizontal dimensions at every point in space and time. In
practice, these equations are discretized over space and time, resulting in a set
of nonlinear equations of high dimensionality. In addition, the OFMP aims to
choose the position of barriers in space, introducing additional sources of non-
convexity and combinatorial explosion. However, unlike many control-related
optimization problems, the OFMP optimizes only the initial conditions. Flood
propagation is predetermined once initial conditions have been selected; there
are limited opportunities to modify the flood behavior once the topography is
adjusted. This observation provides the key intuition for our contribution: the
development of a principled approach for approximating the response of a flood
to changes in topography that is tractable for current optimization technology.

The main contributions of this paper can be summarized as follows:

– The formalization of the OFMP problem integrating simulation and opti-
mization in the flood domain;

– The derivation of linear lower and upper space-time approximations to the
PDEs describing flood propagation;

– The definition of optimization models for the OFMP based on these approx-
imations;

– Preliminary empirical results that highlight the accuracy and tractability of
the approximations and demonstrate the potential of optimization technol-
ogy in this area.

The derivation of linear approximations to flood propagation is a critical step in
bringing the OFMP into the realm of optimization technology. Our results show
that these approximations can provide reasonable estimates of flood extent and
water depth using the historical Taum Sauk dam failure as an example. The
empirical results also demonstrate the potential of optimization technology on
some preliminary case studies.

It is important to emphasize that the literature associated with optimizing
the locations of barriers for flood mitigation is limited. To the best of our knowl-
edge, the closest related work is [6]. They propose an interdiction model for flood
mitigation and develop flood surrogates from simulation to serve as proxies for
calculating flood response to mitigation efforts. However, these surrogates do not
define strict relationships with the original PDEs. There are a number of papers
focused on simulation-optimization approaches for flood mitigation, where the
PDEs are treated as a black box. These papers are focused on controlling the
release of water to prevent floods and do not attempt to exploit the structure of
the PDEs themselves. Reference [2] is a recent example of this type of approach
and contains an extensive literature review of these methods. The work in [4]
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has considered the PDEs, but their focus is on optimizing normal operations
of an open-channel system. Hence their model only requires one spatial dimen-
sion, whereas the flooding application considered here has an inherent second
spatial dimension and is thus significantly more difficult. Finally, the problem of
optimizing dike heights with uncertain flood possibilities was considered in [1].
The PDEs for flood propagation are not considered, and probability models for
maximum flood depths are used instead.

The rest of this paper is organized as follows: Section 2 discusses the back-
ground of flood modeling. Section 3 presents the linear flood relaxations. Sec-
tion 4 introduces the OFMP and proposes a preliminary optimization model
exploiting the linear flood relaxations. Section 5 describes empirical results, and
Section 6 concludes the paper.

2 Background

The Two-dimensional Shallow Water Equations The 2D shallow water equations
are a system of hyperbolic PDEs increasingly used to accurately model flooding
phenomena. With recent advances in high-performance computing, numerical
solutions to these equations have become tractable for large-scale simulation
problems. They are especially useful in the context of urban flooding, where
one-dimensional models fail due to increased topographic complexity. With bot-
tom slope, bottom friction, and volumetric source terms, the 2D shallow water
equations may be defined as
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where h is the water depth, u and v are horizontal velocities, B is the bottom
topography (or bathymetry), g is the acceleration due to gravity, τx and τy are
horizontal components of the bottom friction, ρ is the water density, and R is a
volumetric source term [3]. Although these equations represent the state of the
art in flood modeling, even when discretized, they remain nonlinear and non-
convex, making them difficult to optimize over. It is thus beneficial to consider
more tractable approximations.

A Hydrostatic Approximation To obtain a more tractable approximation of flood
propagation, we instead consider a simplified fluid model similar to that de-
scribed by Mei, Decaudin, and Hu [8]. In this model, each cell (i, j) exchanges
water content with adjacent cells using a set of virtual “pipes.” For each time
step, the model associates various information with each cell and pipe. In par-
ticular, hijt represents the depth of the water in cell (i, j) at time index t, wijt
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represents the water surface elevation, and Bij represents the topographic el-
evation. Each cell (i, j) also has four connected pipes, one for each of its four
neighboring cells, denoted by W (est), E(ast), N(orth), and S(outh). Each pipe
is associated with an outgoing volumetric flux, fkijt, which represents the flow of
water from cell (i, j) to its neighbor in position k (k ∈W,E,N, S) at time index
t. For instance, fWijt represents the outgoing flux from (i, j) to its “western” (left)
neighbor (i.e., cell (i− 1, j)) at time index t.

In the model, the flux of a pipe is accelerated by the hydrostatic pressure
difference between adjacent cells. The water volume V of a cell is integrated using
the accumulated flux from all connected pipes. This corresponds to a change
in the cell’s depth and water surface elevation. These concepts are illustrated
visually in Figures 1 and 2.

w

B

h

Fig. 1: The pipe flow model is discretized
into columnar components, with h denot-
ing the water depth, B the topographic
elevation, and w the water surface.

(i, j)

(i, j − 1)

(i, j + 1)

(i− 1, j) (i+ 1, j)
EW

N

S

Fig. 2: Two-dimensional representa-
tion of the pipe flow discretization
containing cell (i, j), adjacent cells,
and the four interfaces of (i, j).

For each cell, we first define the estimated flux vector f̃ijt = (f̃Wijt, f̃
E
ijt, f̃

N
ijt, f̃

S
ijt)

using the hydrostatically derived relation

f̃kijt = max

(
0, fkij,t−1 +

Ag∆t

∆s
∆wk

ij,t−1

)
, (2)

where A is the cross-sectional area of the pipe, g is the acceleration due to
gravity, ∆s is the length of the virtual pipe (typically the grid cell spacing, e.g.,
∆x or ∆y), ∆t is the simulation time step, and ∆wk

ijt is the difference in water
surface elevation between cell (i, j) and its k-neighbor at time index t, i.e.,

∆wk
ijt = (Bij + hijt)− (Bk

ij + hkijt). (3)

In this approximation, the estimated outgoing flux from a cell may exceed
the available water content within that cell. This is obviously not desirable from
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a volume conservation standpoint. More importantly, if left uncorrected, this can
lead to negative water depths and numerical instabilities. This may be resolved
by scaling the outgoing flux with respect to the water content available in the
cell. A scaling factor, Kijt, for the outgoing flux vector may be defined as

Kijt = min

1,
hij,t−1∆x∆y(

f̃Wijt + f̃Eijt + f̃Nijt + f̃Sijt

)
∆t

 . (4)

The estimated outgoing flux vector f̃ijt is then scaled by Kijt to produce the
actual outgoing flux vector fijt, i.e.,

fijt = Kijtf̃ijt. (5)

The change in water volume may then be computed using the accumulation
of incoming flux, f in, and subtraction of outgoing flux, fout. For cell (i, j), the
volumetric change in water is thus

∆Vijt =
(∑

f inijt −
∑

foutijt

)
∆t

=
(
fEi−1,j,t + fWi+1,j,t + fNi,j−1,t + fSi,j+1,t −

∑
fkijt

)
∆t.

(6)

Finally, the water depth in each cell may be integrated:

hijt = hij,t−1 +
∆Vijt
∆x∆y

. (7)

For completeness, we also suggest the naive reflective boundary conditions

hijt = 0, fijt = 0, f̃ijt = 0 (8)

along the four boundaries of the domain.

3 Linear Approximations of the Pipe Flow Model

The pipe flow model described includes nonlinear terms, even when A, B, g, ∆t,
∆x, and ∆y are treated as constants. Fortunately, these terms are only used for
corrective measures, i.e., in Equation (4). We now present two approximations to
remove them. For convenience, we call them the lower and upper approximations
because they underestimate and overestimate the water being sent from a cell
to its neighbors instead of applying the scaling factor K.

Lower Approximation The lower approximation is based on the following idea:
if the estimated outgoing flux from a cell exceeds the available water content
within that cell, the outgoing flux is approximated as zero, i.e., when

hij,t−1∆x∆y <
(
f̃Wijt + f̃Eijt + f̃Nijt + f̃Sijt

)
∆t, (9)

fijt is approximated as zero. This bypasses the need for Equations (4) and (5).
Intuitively, this means that, “when there is not enough water to be transferred,”
the water is held back within the cell.
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Upper Approximation The upper approximation implements another intuitive
idea: if the estimated outgoing flux from a cell exceeds the available water content
within that cell, the model assumes there is enough water, and no scaling occurs.
This again bypasses the need for Equations (4) and (5).

However, it is important to note that, in the case of positive fluxes calculated
as a result of differing dry topographies (and thus differing water surface ele-
vations), Equations (4) and (5) provide an additional correction beside scaling.
When the available water content within a cell is equal to zero, Kijt is always
forced to zero, and the resultant fluxes fijt are thus calculated as zero. Although
a similar correction is achieved automatically by the lower approximation, it
is necessary to impose the constraint fijt = 0 when hij,t−1 = 0 in the upper
approximation.

4 The Optimal Flood Mitigation Problem

This section describes two optimization models based on the lower and upper
approximations, respectively. Both optimization models aim to protect a set A
of assets by minimizing maximum water depths at asset locations over time. To
protect the assets, one or more barriers (e.g., sandbags or levees) can be placed on
a cell to increase its elevation; a fixed number of barriers, n, are available for that
purpose. The models are similar, differing only in the approximations used. We
present them both to give a global view of the lower and upper approximations.
Boundary conditions are omitted in the optimization models for simplicity.

Lower Approximation Optimization Model The lower approximation optimiza-
tion model is presented in Model 1. The objective function (10a) minimizes
maximum water depths over the set A of assets. Constraints (10b) and (10c)
limit the number of barriers, nij , that may be placed in each cell. This number
must be no greater than M , the maximum allowable number of barriers per
cell, as specified in (10b). The budget of barriers is limited by Constraint (10d).
Constraint (10e) defines the water surface elevation as the sum of topographic
elevation (i.e., base elevation and barrier additions, each with height ∆B) and
water depth. Constraint (10f) defines estimated outgoing flux values, which must
always be greater than or equal to zero. Constraints (10g) and (10h) define the
outgoing flux values as prescribed by the lower approximation. Constraint (10i)
provides a convenient definition for f in, the sum of all incoming flux. Finally,
the integration of water depth is defined using an Euler step in Constraint (10j).

Upper Approximation Optimization Model The upper approximation optimiza-
tion model is presented in Model 2. The model is clearly similar to the lower
approximation optimization model. The only differences are in Constraints (11g)
and (11h), which ensure that outgoing fluxes are nonzero only when the water
depth within a cell is greater than zero, and in Constraint (11j), which ensures
nonnegative depths: if the predicted net flux results in the transfer of water
greater than what is contained within the cell, this depth is set to zero.
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Model 1: Lower approximation optimization model

minimize
∑
ij∈A

max
t
hijt (10a)

subject to nij ∈ [0,M ] (10b)

nij = 0; ∀(i, j) ∈ A (10c)∑
ij

nij = n (10d)

wijt = (Bij + nij∆B) + hijt (10e)

f̃kijt = max

(
0, fkij,t−1 +

Ag∆t

∆s
(wij,t−1 − wkij,t−1)

)
(10f)

fkijt = f̃kijt if hij,t−1∆x∆y ≥ ∆t
∑
k

f̃kijt (10g)

fkijt = 0 if hij,t−1∆x∆y < ∆t
∑
k

f̃kijt (10h)

f inijt = fEi−1,j,t + fWi+1,j,t + fNi,j−1,t + fSi,j+1,t (10i)

hijt = hij,t−1 +∆t
f inijt −

∑
k f

k
ijt

∆x∆y
(10j)

Model 2: Upper approximation optimization model

minimize
∑
ij∈A

max
t
hijt (11a)

subject to nij ∈ [0,M ] (11b)

nij = 0; ∀(i, j) ∈ A (11c)∑
ij

nij = n (11d)

wijt = (Bij + nij∆B) + hijt (11e)

f̃kijt = max

(
0, fkij,t−1 +

Ag∆t

∆s
(wij,t−1 − wkij,t−1)

)
(11f)

fkijt = f̃kijt if hij,t−1 > 0 (11g)

fkijt = 0 if hij,t−1 ≤ 0 (11h)

f inijt = fEi−1,j,t + fWi+1,j,t + fNi,j−1,t + fSi,j+1,t (11i)

hijt = max

(
0, hij,t−1 +∆t

f inijt −
∑
k f

k
ijt

∆x∆y

)
(11j)
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5 Empirical Results

This section reports some preliminary results regarding the proposed approxi-
mations and the associated optimization models.

5.1 Evaluation of the Flood Model Relaxations

This section compares differences among the discussed simulation models, i.e.,
the 2D shallow water equations, pipe flow, lower approximation, and upper ap-
proximation models. The comparison uses the historical Taum Sauk dam failure
as an example scenario, with a thirty meter spatial resolution and a grid con-
taining approximately 38,000 cells. In the models, a gravitational acceleration
constant of 9.80665 m/s2 was used, and the dam failure was modeled as a time-
dependent volumetric point source, using a hydrograph similar to a United States
Geological Survey estimate [11]. In the shallow water equations model, a Man-
ning’s roughness coefficient of 0.035 was used, and time steps varied based on
a Courant condition. In the remaining models, various constant cross-sectional
pipe areas and time steps were used. Note that, in a simulation context, Mei,
Decaudin, and Hu did not suggest using constant cross-sectional pipe areas or
time steps; however, our intent was to simplify these models as much as possible.

For flood mitigation, we are primarily concerned with the accuracy of maxi-
mum depth estimates over a simulation’s time extent.3 Figure 3 compares images
of maximum depth results from a 2D shallow water equations model (SWE)
similar to [3], as well as pipe flow (P), lower approximation (L), and upper
approximation (U) models which used various pipe areas and time steps.

The top row of Figure 3 compares SWE with P, L, and U using a param-
eterization calibrated to minimize the root-mean-square error between P and
SWE. P and L provided very reasonable estimates of SWE, but U greatly
overestimated maximum depths. This is because, in U, the large pipe area of
500 m2 resulted in unrestricted large fluxes and thus poor volume conservation.
In the second row, the pipe area was substantially decreased, and the pipe flow
and lower approximation models overestimated SWE, although U behaved more
reasonably. Finally, in the third row, as ∆t was decreased, U began to converge
upon P and L. Most model parameterizations provided reasonable simulated
flood extents, similar to those found in the literature [11, 7].

Finally, Figure 4 reports volume conservation error for selected upper approx-
imation parameterizations. As anticipated, the pipe flow and lower approxima-
tion models conserved volume well, with error on the order of machine epsilon.
The upper approximation accumulated error more rapidly, although it displayed
good convergence as the time step was decreased.

It is important to note a unique difference between pipe flow simulations
and traditional two dimensional hydrodynamic simulations based on the shallow
water equations. When using a full two-dimensional shallow water model, the

3 This is different from evacuation settings, in which the flood arrival time at various
locations is critical information.
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Fig. 3: Maximum flood depths for ten-hour simulations of the historical Taum
Sauk dam failure using shallow water equations (SWE), pipe flow (P), lower
approximation (L), and upper approximation (U) models. Pipe flow, lower ap-
proximation, and upper approximation models are compared using constant time
steps (∆t) of 1.0 and 0.1 s and cross-sectional pipe areas (A) of 500 and 5 m2.
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Fig. 4: Volume conservation error in upper approximation models (U) for ten-
hour simulations of the Taum Sauk dam break using various time steps. Volume
conservation error was computed as (Vcomputed − Vadded)/Vadded.

Taum Sauk scenario can be almost fully simulated using a simulation time extent
of three hours. In contrast, the pipe flow and approximated models allow for
faster or slower propagation, depending on the model parameterization. As an
example, the large pipe area used to produce simulation results in the top row of
Figure 3 resulted in fast propagation; the flood was fully propagated in less than
an hour. The smaller pipe areas used in the second and third rows resulted in
slower propagation; a time extent of roughly three hours was required. In general,
as the cross-sectional pipe area decreased, a longer time extent was required for
full propagation. Nonetheless, since flood mitigation is primarily concerned with
protecting assets, and thus maximum water depth, we found differences in flood
propagation speed acceptable for our current application.

5.2 The Potential of Optimization

This section describes some small case studies to highlight the potential and chal-
lenges of optimization for flood mitigation and, more generally, the integration
of simulation and optimization.

Experimental Setting The lower and upper optimization models were imple-
mented using the C++ CPLEX interface and run on twenty Intel Xeon E5-2660
v3 cores at 2.60 GHz, with 128 GB of memory. Conditional expressions and
min/max functions were eliminated using big-M transformations. No attempt
was made to optimize the model or exploit problem structure.

A Simple Case Study To validate the optimization model, an 8x8 scenario was
constructed, with ∆x and ∆y equal to one meter. In this scenario, a topographic
gradient was introduced, from the top to the bottom of the domain, with eleva-
tions linearly decreasing from 0.7 to zero meters in steps of 0.1 meters. Four cells
near the top of the domain were initialized to contain one meter of water depth.
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Fig. 5: Optimal elevation fields and maximum depths using the lower approxi-
mation, where the allowable number of barriers per cell is one (first two rows)
or two (next two rows), and the total number of barriers ranges from zero to
five. Darker oranges and blues correspond to larger topographic elevations and
depths, respectively, and red circles correspond to assets that were protected.

Under the influence of gravity and in the presence of the topographic gradient,
the water was pushed down the domain over time. Three assets to protect were
arbitrarily placed throughout the domain, and individual barrier heights (∆B)
of 0.5 meters were employed. A constant time step of 0.1 seconds was used, and
eight time steps were simulated. The optimization problem was varied to un-
derstand how solutions changed using various rules for resource allocation. In
particular, the experiments studied limits on the total number of barriers and
limits on the number of allowable barriers per cell.

Optimal Asset Protection Figure 5 displays optimization results from the lower
optimization models. Observe that, when only one barrier was allowed per cell,
the optimization model tried to mitigate flooding in the asset regions almost
one at a time, before placing more barriers in interesting places throughout the
domain. When two barriers were allowed per cell, it clearly became preferential
to protect the topmost asset, which received a large amount of water over the
duration of the simulation. Figure 6 displays optimization results from the up-
per optimization models. These show similarly interesting outcomes. In the one
barrier per cell case, the optimization decided to protect the topmost asset less
in favor of protecting the bottom assets. When two barriers were allowed per
cell and enough barriers were available, it was clearly beneficial to protect the
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Fig. 6: Optimal elevation fields and maximum depths using the upper approxi-
mation (same setting as the lower approximation in Fig. 5).

topmost asset as much as possible from the water above it, which greatly reduced
the objective value. It is also important to observe the non-monotonic behavior
of the optimization results. Allowing more barriers often changed their optimal
positions. This was the case when moving from four to five barriers in the top
row and when moving from three to four in the bottom row. Since the barrier
placements differed in both models, it was important to study how they behaved
using the other model. These results are shown in the last two columns of Table
1. Column oopt gives the optimal solutions, and the last column describes the ob-
jective value obtained when the optimal solution of the upper model was used in
the lower model and vice-versa. They are particularly interesting, as they some-
times show significant differences in objective values. This indicates the need to
apply robust optimization techniques. In practice, of course, solutions could be
evaluated using full hydrodynamic simulations for various scenarios.

Evolution of the Objective Value Figure 7 depicts the value of the objective
function as the number of available barriers increased, for cases where the models
allowed one or two barriers per cell. The critical information is the importance of
using multiple barriers at a specific location, since it brings significant benefits
as the number of barriers increases. We anticipate similar behavior when the
number of allowable barriers per cell is increased to three or four. Note also
that the lower and upper approximations behaved comparably as the number
of maximum barriers was increased and, as expected, the upper objective value
was always greater than the lower objective value.
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Fig. 7: Optimal objective function values using lower and upper approximations
(L and U) and increasing allowable numbers of barriers. Also compared are the
differences among objective values when one barrier is allowed per cell (L1 and
U1) versus two barriers per cell (L2 and U2).

Model tCPU (s) nnodes nvar ncon nbin oopt (m) ocom (m)

L1
3 49.65 37808 2280 4410 840 0.111607 0.134935

L1
4 83.66 71528 2280 4410 840 0.0878997 0.123499

L1
5 91.53 66485 2280 4410 840 0.0837807 0.112588

L2
3 82.74 86964 2646 4998 975 0.0739754 0.134935

L2
4 134.58 121477 2651 5004 978 0.0484597 0.155655

L2
5 80.61 56586 2651 5004 978 0.0248889 0.13016

U1
3 55.56 41487 2027 3840 840 0.178971 0.239858

U1
4 46.17 25037 2027 3840 840 0.17244 0.234095

U1
5 123.50 83850 2027 3840 840 0.166794 0.225759

U2
3 77.29 55398 2379 4292 1018 0.178971 0.197646

U2
4 263.72 203168 2382 4297 1019 0.161937 0.163313

U2
5 234.85 108909 2382 4297 1019 0.127602 0.157531

Table 1: General statistics and analysis of selected optimization models.



14

0 1 2 3 4 5 6 7 8 9

·104

0

0.1

0.2

0.3

Number of nodes

B
o
u
n
d
s

(m
)

L1
3p L2

3p L1
3d L2

3d

U1
3p U2

3p U1
3d U2

3d

Fig. 8: Performance of CPLEX on problems where n = 3; p and d indicate the
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Computational Results Finally, Table 1 presents preliminary computational re-
sults. The first column describes the instance in terms of lower (L) or upper (U)
approximations. The superscript represents the maximum number of barriers
per cell, and the subscript represents the total number of barriers. The second
column denotes (wall clock) execution time, in seconds. The third column shows
the number of nodes in the search tree. The fourth, fifth, and sixth columns de-
scribe the number of variables, constraints, and binary variables after presolve.
Column oopt describes the optimal objective value in meters of flood depth. The
last column describes the objective value obtained when the optimal solution of
the upper model was used for the lower model and vice-versa.

As mentioned earlier, no attempt was made to optimize the model or to
exploit the problem structure. The instances have about 2,000 (mostly binary)
variables and 4,000 constraints, and they can typically be solved in a few minutes.
In general, CPLEX was not able to find high-quality solutions quickly, which
substantially increased computation times. Integrating good primal heuristics
should improve performance significantly. This is illustrated in Figure 8, where
CPLEX spent significant time improving the primal bound.

6 Conclusion

Each year, flood-related disasters cause billions of dollars in damage, loss of
life, and significant human suffering. Resources such as levees and berms are
constructed and utilized to mitigate the consequences of such events. The de-
ployment of these mitigation efforts is often ad hoc and relies on subject matter
expertise, as computational methods are immature due to the complexity of
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embedding flood models in modern optimization technologies. The goal of this
paper was to establish the foundations for a more principled approach to flood
mitigation. It introduced the Optimal Flood Mitigation Problem (OFMP), which
aims at integrating simulation and optimization tightly by including flood simu-
lation equations as part of the optimization model. To ensure the tractability of
the approach, the main contribution of the paper is the development of linear,
physics-based approximations of flood propagation models. Experimental results
on the Taum Sauk dam failure show the potential of the models for predicting
flood extent and maximum water depths. The integration of these approxima-
tions in optimization models was tested on a small case study, demonstrating
the potential of optimization in this context.

Our current work is focused on addressing the computational challenges
raised by the OFMP. Surprisingly, state of the art MIP solvers are not capable
of exploiting the structure of this application. In particular, they do not seem to
recognize that, once the barriers are placed, the problem is predetermined. That
is, given a fixed topographic elevation field, only the deterministic simulation
step remains. A combination of constraint programming (for fast propagation
of the water depths) and linear programming (for computing a strong lower
bound) has much potential in addressing this challenge. In addition, it would
be interesting to consider whether strong dominance relationships hold between
candidate solutions. More generally, exploiting the natural separation between
mitigation decisions and flood propagation variables will be key when scaling to
realistic problems.
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